当前位置:主页>科 研>学术交流>

不解密数据竟也能识别TLS加密的恶意流量?

  加密一直都是保护用户通讯隐私的重要特性,可如果恶意程序在传播过程中也加密的话,对这样的流量做拦截感觉就麻烦了很多。谈到加密,TLS(Transport Layer Security Protocol,传输层安全协议)就是当前使用非常广泛的协议:国外部分研究机构的数据显示,已有至多60%的网络流量采用TLS,当然也包括一些恶意程序(虽然大约只有10%)。

  来自思科的一组研究人员最近研究出一种方法,不需要对这类流量进行解密,就能侦测到采用TLS连接的恶意程序,是不是感觉有点小神奇?
 


 

  TLS协议

  这是怎么做到的?

  思科已经公开了这份研究报告,题为《辨认使用TLS的恶意程序(无需解密)》(英文其实表达得更为准确,名为”Deciphering Malware’s use of TLS”)。我们比较笼统地归结原理,其实是TLS协议本身引入了一系列复杂的数据参数特性——这些特性是可以进行观测检查的,这样自然就能针对通讯双方做出一些合理的推断。

  这份报告中有提到:“通过这些特性,我们可以检测和理解恶意程序通讯方式,与此同时TLS本身的加密属性也能提供良性的隐私保护。”听起来似乎还是比较理想的新技术——在不需要对流量进行解密的情况下就达成流量安全与否的判断,的确具备很大意义。

  为此,思科大约分析了18个恶意程序家族的数千个样本,并在企业网络中数百万加密数据流中,分析数万次恶意连接。整个过程中,网络设备的确不对用户数据做处理,仅是采用DPI(深度包检测技术)来识别clientHello和serverHello握手信息,还有识别连接的TLS版本。

  “在这篇报告中,我们主要针对433端口的TLS加密数据流,尽可能公正地对比企业一般的TLS流量和恶意TLS流量。为了要确认数据流是否为TLS,我们需要用到DPI,以及基于TLS版本的定制signature,还有clientHello和serverHello的信息类型。”

  “最终,我们在203个端口之上发现了229364个TLS流,其中443端口是目前恶意TLS流量使用最普遍的端口。尽管恶意程序端口使用情况多种多样,但这样的情况并不多见。”
 


 

  不仅如此,据说他们还能就这些恶意流量,基于流量特性将之分类到不同的恶意程序家族中。“我们最后还要展示,在仅有这些网络数据的情况下,进行恶意程序家族归类。每个恶意程序家族都有其独特的标签,那么这个问题也就转化为不同类别的分类问题。”

  “即便使用相同TLS参数,我们依然就够辨认和比较准确地进行分类,因为其流量模式相较其他流量的特性,还是存在区别的。我们甚至还能识别恶意程序更为细致的家族分类,当然仅通过网络数据就看不出来了。”
 


 

  实际上,研究人员自己写了一款软件工具,从实时流量或者是抓取到的数据包文件中,将所有的数据输出为比较方便的JSON格式,提取出前面所说的数据特性。包括流量元数据(进出的字节,进出的包,网络端口号,持续时间)、包长度与到达间隔时间顺序(Sequence of Packet Lengths and Times)、字节分布(byte distribution)、TLS头信息。

  其实我们谈了这么多,还是很抽象,整个过程还是有些小复杂的。有兴趣的同学可以点击这里下载思科提供的完整报告。

  分析结果准确性还不错

  思科自己认为,分析结果还是比较理想的,而且整个过程中还融合了其机器学习机制(他们自己称为机器学习classifiers,应该就是指对企业正常TLS流量与恶意流量进行分类的机制,甚至对恶意程序家族做分类),正好做这一机制的测试。据说,针对恶意程序家族归类,其准确性达到了90.3%。

  “在针对单独、加密流量的识别中,我们在恶意程序家族归类的问题上,能够达到90.3%的准确率。在5分钟窗口全部加密流量分析中,我们的准确率为93.2%(make use of all encrypted flows within a 5-minute window)。”

(责任编辑:宋编辑)

分享到:

更多
发表评论
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。
评价:
表情:
  • 微笑/wx
  • 撇嘴/pz
  • 抓狂/zk
  • 流汗/lh
  • 大兵/db
  • 奋斗/fd
  • 疑问/yw
  • 晕/y
  • 偷笑/wx
  • 可爱/ka
  • 傲慢/am
  • 惊恐/jk
用户名: 验证码:点击我更换图片
资料下载专区
图文资讯

安全是中国互联网生态的共同基石

安全是中国互联网生态的共同基石

2016年7月13日,阿里巴巴集团CEO张勇在“2016阿里安全峰会”上表示,安全不仅是阿里业...[详细]

不解密数据竟也能识别TLS加密的恶意流量?

不解密数据竟也能识别TLS加密的恶意流量?

加密一直都是保护用户通讯隐私的重要特性,可如果恶意程序在传播过程中也加密的话,对...[详细]

如何能在遭遇勒索软件攻击时硬气地“拒绝支

如何能在遭遇勒索软件攻击时硬气地“拒绝支付”?

 随着勒索软件(即劫持企业数据或应用直至企业为数据的解密支付钱财)威胁的不断增长,...[详细]

世界是灰色的:也谈对NGFW的几点思考

世界是灰色的:也谈对NGFW的几点思考

当相机拍摄出一幅幅黑白影像,其实是灰度图像,有着丰富的层次感。“灰”并不是黑与白...[详细]

工控系统安全监管要求愈加严格:评估风险宜

工控系统安全监管要求愈加严格:评估风险宜早不宜迟

  网络犯罪不再是局限在IT行业的问题。美国国土安全部近期警告称,成千上万个工业控...[详细]

返回首页 返回顶部