这一问题的突破是实现大数据知识发现的前提和关键。从长远角度来看,依照大数据的个体复杂性和随机性所带来的挑战将促使大数据数学结构的形成,从而导致大数据统一理论的完备。从短期而言,学术界鼓励发展一种一般性的结构化数据和半结构化、非结构化数据之间的转化原则,以支持大数据的交叉工业应用。管理科学,尤其是基于最优化的理论将在发展大数据知识发现的一般性方法和规律性中发挥重要的作用。
大数据的复杂形式导致许多对“粗糙知识”的度量和评估相关的研究问题。已知的最优化、数据包络分析、期望理论、管理科学中的效用理论可以被应用到研究如何将主观知识融合到数据挖掘产生的粗糙知识的“二次挖掘”过程中。这里人机交互将起到至关重要的作用。
三、数据异构性与决策异构性的关系对大数据知识发现与管理决策的影响
由于大数据本身的复杂性,这一问题无疑是一个重要的科研课题,对传统的数据挖掘理论和技术提出了新的挑战。在大数据环境下,管理决策面临着两个“异构性”问题:“数据异构性”和“决策异构性”。传统的管理决定模式取决于对业务知识的学习和日益积累的实践经验,而管理决策又是以数据分析为基础的。
大数据已经改变了传统的管理决策结构的模式。研究大数据对管理决策结构的影响会成为一个公开的科研问题。除此之外,决策结构的变化要求人们去探讨如何为支持更高层次的决策而去做“二次挖掘”。无论大数据带来了哪种数据异构性,大数据中的“粗糙知识”仍可被看作“一次挖掘”的范畴。通过寻找“二次挖掘”产生的“智能知识”来作为数据异构性和决策异构性之间的桥梁是十分必要的。探索大数据环境下决策结构是如何被改变的,相当于研究如何将决策者的主观知识参与到决策的过程中。
大数据是一种具有隐藏法则的人造自然,寻找大数据的科学模式将带来对研究大数据之美的一般性方法的探究,尽管这样的探索十分困难,但是如果我们找到了将非结构化、半结构化数据转化成结构化数据的方法,已知的数据挖掘方法将成为大数据挖掘的工具。
以上是我对大数据的三个重要技术问题进行研究的一些心得,也仅仅是一个研究大数据挑战的起点。除此之外,还有一些数据科学的问题,包括在获得数据和从数据中产生规则方面可能存在的公理体系,基于数据库的知识发现规则与基于开放数据源的知识发现规则以及大数据挖掘的整体和(或)局部解的存在性问题等等。在不久的将来,我相信这些问题都需要去仔细研究,以获得突破性科研与应用成果。
(责任编辑:)