当今,大数据的到来,已经成为现实生活中无法逃避的挑战。每当我们要做出决策的时候,大数据就无处不在。大数据术语广泛地出现也使得人们渐渐明白了它的重要性。大数据渐渐向人们展现了它为学术、工业和政府带来的巨大机遇。与此同时,大数据也向参与的各方提出了巨大的挑战,首先是三个重要的技术问题:
一、如何利用信息技术等手段处理非结构化和半结构化数据
大数据中,结构化数据只占15%左右,其余的85%都是非结构化的数据,它们大量存在于社交网络、互联网和电子商务等领域。另一方面,也许有90%的数据来自开源数据,其余的被存储在数据库中。大数据的不确定性表现在高维、多变和强随机性等方面。股票交易数据流是不确定性大数据的一个典型例子。
大数据刺激了大量研究问题。非结构化和半结构化数据的个体表现、一般性特征和基本原理尚不清晰,这些都需要通过包括数学、经济学、社会学、计算机科学和管理科学在内的多学科交叉来研究和讨论。给定一种半结构化或非结构化数据,比如图像,如何把它转化成多维数据表、面向对象的数据模型或者直接基于图像的数据模型?值得注意的是,大数据每一种表示形式都仅呈现数据本身的侧面表现,并非全貌。
如果把通过数据挖掘提取“粗糙知识”的过程称为“一次挖掘”过程,那么将粗糙知识与被量化后主观知识,包括具体的经验、常识、本能、情境知识和用户偏好,相结合而产生“智能知识”过程就叫做“二次挖掘”。从“一次挖掘”到“二次挖掘”类似事物“量”到“质”的飞跃。
由于大数据所具有的半结构化和非结构化特点,基于大数据的数据挖掘所产生的结构化的“粗糙知识”(潜在模式)也伴有一些新的特征。这些结构化的粗糙知识可以被主观知识加工处理并转化,生成半结构化和非结构化的智能知识。寻求“智能知识”反映了大数据研究的核心价值。
二、如何探索大数据复杂性、不确定性特征描述的刻画方法及大数据的系统建模
(责任编辑:)